Viernes 15 de Agosto de 2025

Hoy es Viernes 15 de Agosto de 2025 y son las 00:54 ULTIMOS TITULOS:

14/08/2025

Cómo es el ambicioso plan de la NASA para instalar un reactor nuclear en la Luna antes de 2030

Fuente: telam

El proyecto, que pertenece al programa Fission Surface Power, busca suministrar electricidad continua a futuras bases lunares. Cuáles son los desafíos que deberán enfrentar para garantizar operaciones sostenidas en ambientes extremos

>La El proyecto, que forma parte del programa Fission Surface Power, representa una oportunidad inédita para la El objetivo del programa Fission Surface Power es desarrollar un sistema capaz de suministrar energía continua tanto a futuras bases lunares como, en un futuro, a misiones tripuladas en Marte. La Universidad de Illinois Urbana-Champaign destaca que la elección de la fisión nuclear se debe a su alta densidad energética y a la posibilidad de operar sin interrupción, lo que permite mantener operaciones las 24 horas del día independientemente de la luz solar; por eso resulta especialmente adecuada para misiones de larga duración y ambientes extremos como el lunar.

Huff sostiene que la energía nuclear representa una oportunidad única para impulsar el descubrimiento científico en la Luna, pero advierte que cumplir la meta de 2030 exigirá superar obstáculos importantes: desde la necesidad de una ingeniería precisa y una planificación de seguridad rigurosa, hasta garantizar una inversión institucional constante. Específicamente, menciona que los principales retos abarcan tanto el ensamblaje y transporte del reactor como la gestión de peso y volumen para cumplir con las restricciones de la NASA.

El reactor debe construirse y cargarse completamente en la Tierra, trasladarse en un único cohete y prepararse para su operación lunar con ajustes mínimos. El sistema no puede exceder las 6 toneladas métricas y el nuevo objetivo de cien kilovatios —suficientes para abastecer a unas 80 viviendas estadounidenses promedio— vuelve aún más exigentes estos límites, de modo que la ingeniería de sistemas será clave para resolverlos y minimizar el costo y la viabilidad del transporte.

El reactor utilizará combustible de uranio para generar una reacción en cadena, cuyo calor se transformará en electricidad a través de un sistema de ciclo cerrado Brayton, tal como exige la nueva directiva de la NASA. La energía obtenida alimentará infraestructuras lunares como hábitats, laboratorios científicos, sistemas de soporte vital, comunicaciones y vehículos exploradores.

Como la generación eléctrica será continua, se contempla la instalación de baterías que almacenen el excedente para abastecer picos de demanda. Todo el diseño debe garantizar eficiencia y fiabilidad, respondiendo a las necesidades cambiantes de la misión.

La seguridad es otro pilar fundamental del proyecto. Según la Universidad de Illinois Urbana-Champaign, los riesgos principales se reparten entre el lanzamiento y la operación en superficie lunar. Durante el lanzamiento existe la posibilidad de dispersión de material radiactivo en caso de accidente; para evitarlo, el reactor viajará con uranio fresco —de baja radiactividad— y contará con un plan radiológico específico. El Centro Espacial Kennedy tiene un Centro de Control Radiológico dedicado, donde el personal realiza simulacros periódicos para responder a emergencias.

Ya en la Luna, la seguridad se concentra en el blindaje, la contención y el control autónomo del reactor. El sistema deberá poder apagarse automáticamente frente a cualquier anomalía —incluyendo los sismos lunares— para igualar los estándares de seguridad exigidos a los reactores instalados en la Tierra.

La gestión de residuos radiactivos sigue sin una solución definitiva. El combustible gastado contendrá productos de fisión mucho más peligrosos que el uranio original, y transportarlos de regreso a la Tierra sería arriesgado, especialmente ante una eventual reentrada descontrolada.

En cuanto al mantenimiento, estos reactores están diseñados para operar de manera completamente autónoma, sin necesidad de recarga de combustible ni intervenciones humanas durante toda su vida útil. El diseño actual de la NASA prevé una década de funcionamiento ininterrumpido, con sistemas que minimicen los riesgos y aseguren la continuidad operativa durante toda la misión.

Fuente: telam

Compartir

Comentarios

Aun no hay comentarios, sé el primero en escribir uno!